CREEA: MFA and waste accounts

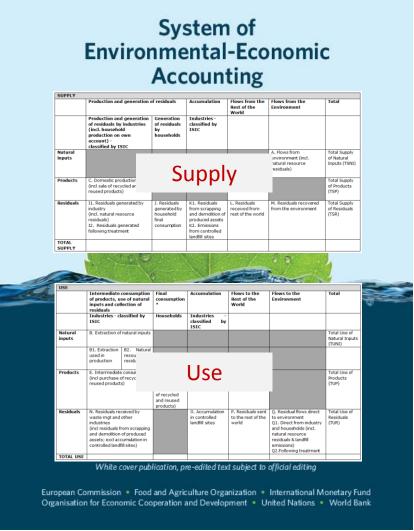
- Method: Physical supply-use tables, and

- Case results: waste tables

Jannick H Schmidt

Brussels 25th March 2014

2.-0 LCA consultants, Skibbrogade 5, 1, 9000 Aalborg, Denmark www.lca-net.com



Physical Material supply-use tables (PSUT)

Defined in System of Environmental-Economic Accounts (SEEA2012)

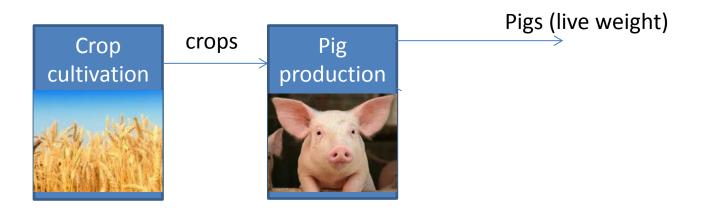
PSUT:

- Consistent accounting framework:
 - Economic/Physical flows
 - Same concepts and classifications
 - Supply-use framework
- Types of flows:
 - Resources
 - Products
 - Residuals (emissions&waste)
- Types of activities:
 - Industries
 - Households
 - Accumulation
 - Import/export

20 LCA consultants

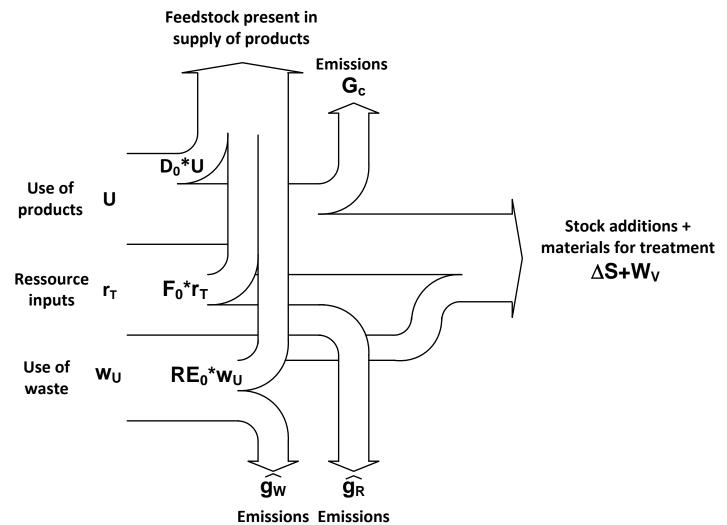
Beyond SEEA2012 in the CREEA-project

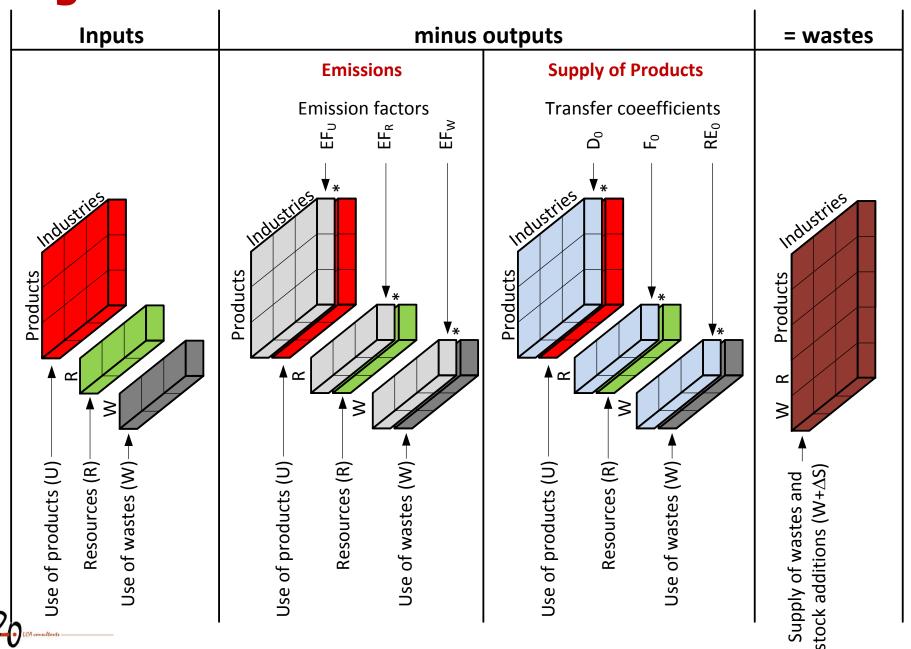
Terminology, concepts and classification


- New definitions: Distinction between products and materials for treatment
- Waste: Subset of materials for treatment
- Materials for treatment: High level of detail:
 - Most Materials for treatment can be disposed of by recycling/incineration/landfill
 - 35 waste treatment industries (reuse, recycling, incin. biogas, landfill...)
 - 18 different waste fractions

Beyond SEEA2012 in the CREEA-project

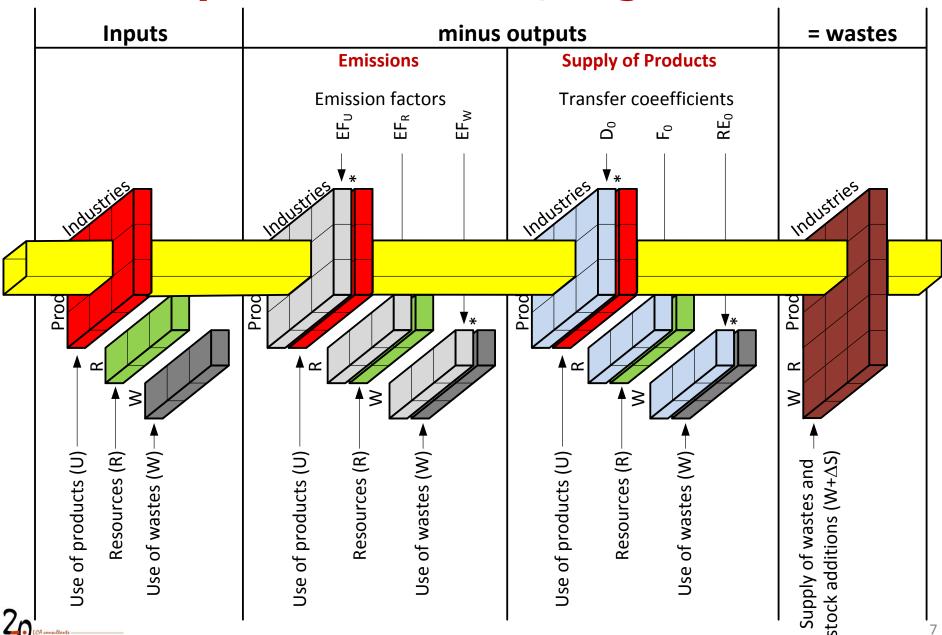
Model for accounting framework (SUT)


- FORWAST-model (EU FP6-project)
- Automated calculation of materials for treatment (waste flows)
- Materials for treatment flows are integrated in product supply and use tables



Mass balance and waste calculation

How to calculate waste generation



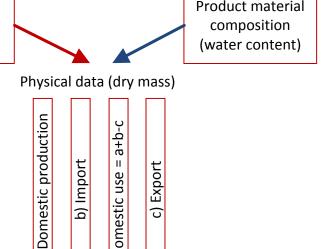
Organization of mass balance

6

Tracability of each element; origin of waste

Specification **Automated balance** of feedstock Inputs minus outputs **=** wastes Emissions **Supply of Products Emission factors** Transfer coeefficients **Products** Products Use of products (U) Supply of products (V' Use of products (U)) Resources (IR) Use of wastes (WV) Use of products (U)) Resources (IR) Use of wastes (WV) Supply of wastes and stock additions (W/+/AS) Total supply ∇ of industry Partial fixed Transfer coeff. Resource eff. (F_0) Feedstock eff. (D_0) **Calculated**

Fixed


Recycling eff. (RE₀)

8

How to create PSUTs & ESUTs

- 3 steps

- Starting point
 - Dom. production
 - Import/export
 - Emission /resource factors
 - Auxiliary tables
- Draft PSUT
 - Supply and use based on MSUT
 - Parameterised emissions/resources
 - Calculated wastes and transfer coeff.
- Re-balanced PSUT
 - Optimization script
 - Negative waste and feedstock efficiencies]0;1[not allowed
- Redistribution of use table while respecting input coefficients

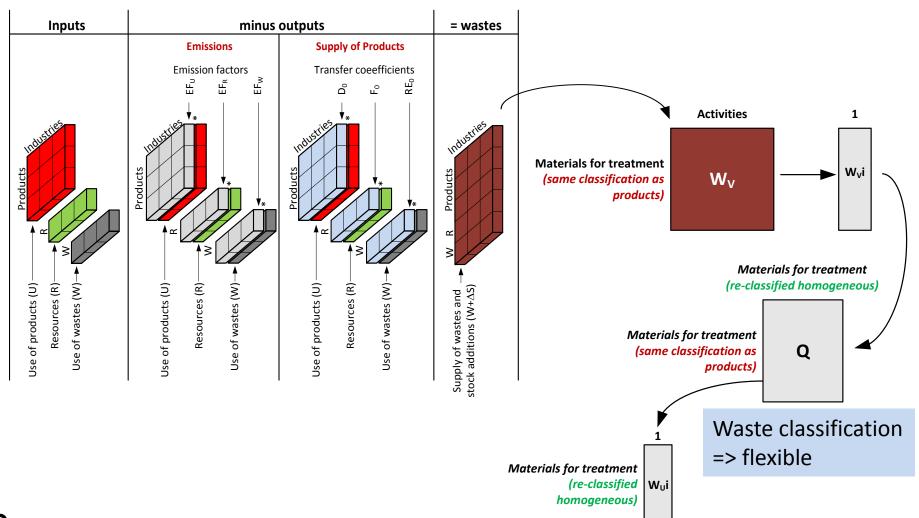
b) Import

Domestic use

Statistical data

PSUT conclusion (1 of 2)

- Scope
 - PSUTs & ESUTs for 43 countries + 4 RoW regions
 - 198 products x 161 industries
 - 18 waste fractions and 35 different waste treatment activities
- Novel integration of waste flows in accounts
 - Waste = balancing item
 - Virgin production vs. recycling of materials for treatment
 - All generated waste is treated in waste treatment activity(ies)



PSUT conclusion (2 of 2)

- PSUTs can be used for
 - Resource efficiency indicators; global, national, industry and product levels
 - Analysis of Unused extraction and Recycling
- New insights
 - Reveals 'errors' in MSUT; mass balances have a strong relationship to how real world works
- Integration of MSUT, PSUT and ESUT
 - HIOT database for:
 - Product life cycle assessment (LCA)
 - National / global production&consumption LCA
 - Allows for analysis at many levels: global, national, industry and product levels
- $2_{\Omega_{11}}$ Can be combined with LCA databases, e.g. ecoinvent => hybrid LCA₁₁

Case results – waste tables

How to produce waste tables from the PSUTs?

20 LCA consultants

Case results – NL waste accounts

Waste supply use tables (aggregated) Calculated from mass balance

Based on waste statistics

The rest (non-registered / accumulation)

Waste fraction	Supply	Use - registered	Use - non-registered
Food	7,392,666	7,392,666	0
Manure	2,903,341	2,903,341	0
Textile	968,083	387,413	580,670
Wood	3,458,295	1,592,592	1,865,703
Paper	6,850,103	4,170,366	2,679,737
Plastics	2,115,184	699,153	1,416,030
Glass	1,339,102	1,339,102	148,363
Ashes	2,904,213	1,262,575	1,641,638
Steel	2,037,483	1,625,015	412,467
Precious metals	130,294	53,417	76,877
Aluminium	1,204,076	493,639	710,437
Lead	105,078	53,006	52,071
Copper	198,520	81,388	117,132
Non ferrous	223,148	91,485	131,663
Construction	31,382,437	31,382,437	0
Oil_haz	12,623,235	2,711,527	9,911,708
Sewage	6,505,546	4,491,491	1,771,738

Sum is gross (incl. waste of waste)

Case results – NL waste accounts

Waste supply table: Who generates waste?

	Electricity,							
	Agriculture,		Manufacturing		gas, heat and	Services and	Household/	
Waste fraction	fishery	Extraction	industries	Construction	water	waste treatment	government	Import
Food	1%	0%	32%	0%	0%	11%	56%	0%
Manure	100%	0%	0%	0%	0%	0%	0%	0%
Textile	1%	0%	5%	0%	0%	8%	86%	0%
Wood	4%	0%	19%	9%	1%	24%	43%	0%
Paper	0%	0%	31%	1%	0%	39%	29%	0%
Plastics	2%	0%	15%	6%	1%	25%	51%	0%
Glass	5%	0%	19%	3%	0%	23%	50%	0%
Ashes	0%	0%	2%	0%	25%	71%	2%	0%
Steel	1%	1%	54%	10%	1%	16%	17%	0%
Precious metals	0%	0%	40%	5%	0%	11%	42%	0%
Aluminium	2%	1%	50%	7%	1%	15%	24%	0%
Lead	0%	0%	88%	1%	0%	5%	5%	0%
Copper	1%	1%	50%	10%	1%	16%	22%	0%
Non ferrous	1%	1%	56%	7%	2%	13%	20%	0%
Construction	1%	3%	13%	8%	0%	16%	59%	0%
Oil_haz	7%	0%	55%	1%	3%	11%	23%	0%
Sewage	1%	0%	5%	0%	0%	60%	33%	0%

Case results – NL waste accounts

Non-registered / Accumulation

Waste use table: How is waste treated?

									V
	Manure					Biogasifi-			Non-
Waste fraction	treatment	Recycling	Incineration	Landfill	Composting	cation	Waste water	Export	registered
Food			17%	2%	58%	1%	3%		20%
Manure	100%								
Textile			29%	3%					68%
Wood		26%	14%	3%		0%			58%
Paper		32%	21%	2%					45%
Plastics		14%	11%	4%					71%
Glass		100%							0%
Ashes		34%		7%					58%
Steel		66%	7%	4%					23%
Precious metals			22%	11%					67%
Aluminium			22%	11%					67%
Lead		16%	18%	9%					56%
Copper			22%	11%					67%
Non ferrous			22%	11%					67%
Construction		100%							0%
Oil_haz			7%	10%					83%
Sewage			10%	5%		3%	37%		45%

CREEA waste tables as official accounts

Can CREEA waste tables be used as official accounts?

- Currently => No! what goes in comes out
 - CREEA is a mass harvest of statistical data => errors
 - Different statistics report different data
- Outlook => Yes
 - The current approach is the right one!
 - National agencies need to verify input data

